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Problem Set 13 solution manual

Exercise. A13.1

a- Consider the elements v1 = (1, 2,−2) and v2 = (0, 4,−3), it is easy to see that v1, v2 ∈ G and
that they are linearly independent.

Then if we prove that they span G we they would form a basis for G. So let (a, b, c) ∈ G
and let we need to write (a, b, c) = α1v1 + α2v2. But it is easy to see that for α1 = a and
α2 = b+ c we get that:

α1v1 + α2v2 = (a, 2a,−2a) + (0, 4(b + c),−3(b + c)) = (a, 2a + 4b + 4c,−2a − 3b − 3c) but
we know that (a, b, c) ∈ G hence 2a + 3b + 4c = 0 which implies that 2a + 4b + 4c = b, and
−2a− 3b− 3c = c so we have our result , and hence we got a basis for G.

b- We have to find a basis for H. First Notice that the smallest positive a we can have is for
a = 1 and hence we get b = 2, c = −2.

Then consider v = (a, b, c) ∈ H v′ = v − a.(1, 2,−2) is of the form (0, b′, c′) ∈ H.

Then we look at H ∩ {a = 0}, let us find the vector who have the smallest positive b′ such
that 3b′+4c′ ≡ 0 mod(12), so we get b′ = 4 and c′ = −3. The vector (0, 4,−3) ∈ H ∩{a = 0}.
Then v′ = (0, b′, c′) ∈ H ∩ {a = 0} where b = 4β, then v′ − β(0, 4,−3) = (0, 0, c′′) ∈ H ∩ {a =
b = 0}.
So now we need to find the smallest positive c′′ for 4c′′ = 0, hence c′′ = 0 mod(3), hence the
vector (0, 0, 3) ∈ H ∩ {a = b = 0}.
It is easy to see that the vectors {(1, 2,−2), (0, 4,−3), (0, 0, 3)} are linearly independent. Fi-
nally to see that they span H, let (a, b, c) ∈ H we are required to find α, β, and γ such that
(a, b, c) = α(1, 2,−2) + β(0, 4,−3) + γ(0, 0, 3), then we get α = a , and beta = b−2a

4 and this
is an integer since we know that 2a+ 3b+ 4c ≡ 0 mod(12) =⇒ 2a− b ≡ 0 mod(4), and we
get γ = 4c+8a+3b−6a

12 = 2a+3b+4c
12 ∈ Z.

c- First For G =<

 1
2
−2

 ,

 0
4
−3

 > . We can choose v1 =

 1
2
−2

 , v2 =

 0
4
−3

 v3 = 0
−1
1

 a basis for Z3. Let A =

 1 0 0
2 4 −1
−2 −3 1

 then det(A) = 1 , and so A ∈ GL3(Z),

with A−1 =

 1 0 0
0 1 1
2 3 4


So
v1 = e1 + 2e2 − 2e3
v2 = 4e2 − 3e3
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v3 = −e2 + e3
=⇒
e1 = v1 + 2v3
e2 = v2 + 3v3
e3 = v2 + 4v3

Hence G/Z3 =< v1, v2, v3 > / < v1, v2 >∼=< v3 >∼= Z.

As for H =<

 1
2
−2

 ,

 0
4
−3

  0
0
3

 . We have to find a new basis for Z3 and H.

Name the elements of the basis of H y1, y2, y3, let v1, v2, v3 a basis for Z3 be as above. Take
a new basis for H z1 = y1, z2 = v2, z3 = 12v3 = y3 − 3y2, then v1, v2, 12v3 is a basis for H ,
and hence :

Z3/H =< v1, v2, v3 > / < v1, v2, 12v3 >∼= Z12.

Section. 23

Exercise. 34
Notice that ap ≡ a mod(p), for all a ∈ Zp, and hence xp + a always has −a as a solution. So xp + a
is not irreducible for all a ∈ Za.

Exercise. 35

First we notice that since F is a field then an 6= 0 for all n, and hence (an)−1 exists. Then since
a is a root of f(x) we have that f(a) = 0 =⇒ f(a).(an)−1 = 0 =⇒ (a0 + a1a + ... + ana

n =
0)(an)−1 = 0 =⇒ a0(an)−1 + a1(an−1)−1 + ...+ an = 0, which implies that 1/a = a−1 is a root of
a0x

n + a1x
n−1 + ...+ an.

Section. 27

Notice that in a finite ring R the maximal ideals are the same as the prime ideals, since suppose
I is prime ideal, then R/I is a finite integral domain and hence a maximal ideal.

Exercise. 2
The maximal and prime ideals are {0, 2, 4, 6, 8, 10}, and {0, 3, 6, 9}.

Exercise. 4
The maximal and prime ideals are {(0, 0), (0, 1), (0, 2), (0, 3)} and {(0, 0), (1, 0), (1, 2), (0, 2)} .

Exercise. 6
We must find c such that Z3/ < x3 + x2 + c > is a field which is equivalent to finding c such that
f(x) = x3 + x2 + c is irreducible.

f(0) = c, hence we want c 6= 0
f(1) = 2 + c, hence we want c 6= −2 mod(3)
f(2) = c
Hence c can only be equal to 2.

2



Exercise. 18

Notice that x2 − 5x + 6 = (x − 3)(x − 2), then < x2 − 5x + 6 > is not maximal, hence
Q/ < x2 − 5x+ 6 > is not a field.

Exercise. 19

We can either use Eisenstein condition with p = 2, or p = 3 to find that x2−6x+6 is irreducible
, or we can see it directly by noticing that the only roots for this polynomial are 3−

√
3 and 3+

√
3,

and hence < x2 − 6x+ 6 > is maximal so Q[x]/ < x2 − 6x+ 6 > is a field.

Exercise. 24

Let P be a prime ideal of R, then R/P is an integral domain. Since R is finite then R/P is a
finite integral domain, and hence P is maximal ideal.

Exercise. 28

Let M be a maximal ideal, and let a, b ∈ R such that ab ∈M with a /∈M , we are required to
show that b ∈M .

Consider I = Ra+M = {ra+m | r ∈ R, and m ∈M}.(check that I is an ideal )
Then for any m ∈ M , m = 0.a + m ∈ I, hence M ∈ I, but since a ∈ I, and a /∈ M we get

that I must be equal to R. Hence 1 ∈ I , so 1 = ra+m multiplying both sides with b we get that
b = rab+mb ∈M . So we deduce that M is prime.

Exercise. 32
It is easy to check that N is an ideal of F [x].

Now we have f and g are of different degrees, and that N 6= F [x]. Suppose that f and g both
irreducible then since they are also of different degrees their gcd is 1, so we can find r1(x), r2(x)
such that 1 = r1(x)f(x) + r2(x)g(x) and hence 1∈ f [x] so N = F [x] which is a contradiction.

Exercise. 34

a- We proved before that A+B is an additive group, and it is easy to see that A+B is closed
under right and left multiplication by elements in R.

b- For any s ∈ A a = a + 0 and since 0 ∈ B we get that a ∈ A + B , and hence A ⊂ A + B ,
similarly B ⊂ A+B.

Exercise. 35

a- We know that A.B is an additive group. let c ∈ A.B then c = Σ
i=0...n

aibi with ai ∈ A bi ∈ B,

then rc = r Σ
i=0...n

aibi = Σ
i=0...n

raibi = Σ
i=0...n

(rai)bi with rai ∈ A, and bi ∈ B hence rc ∈ A.B.

So A.B is an ideal.
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b- Let c be as above, notice that for all i aibi ∈ A since A is an ideal so c ∈ A similarly c ∈ B
hence A.B ⊂ A ∩B.

Section. 38

Exercise. 2

It is a basis since :
(1,0)=(3,1)+(-1)(2,1), and (0,1)=3(2,1)+(-2)(3,1), hence {(2, 1), (3, 1)} span Z× Z.
Also it is easy to see that they are linearly independent, hence they are a basis of Z× Z

Exercise. 3

This is not a basis since any linear combination of these two vectors will give us an even number
in the first coordinate, so this set can’t span the whole ring Z× Z.
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