Problem Set 13 solution manual

Exercise. A13.1

a- Consider the elements $v_{1}=(1,2,-2)$ and $v_{2}=(0,4,-3)$, it is easy to see that $v_{1}, v_{2} \in G$ and that they are linearly independent.
Then if we prove that they span G we they would form a basis for G. So let $(a, b, c) \in G$ and let we need to write $(a, b, c)=\alpha_{1} v_{1}+\alpha_{2} v_{2}$. But it is easy to see that for $\alpha_{1}=a$ and $\alpha_{2}=b+c$ we get that:
$\alpha_{1} v_{1}+\alpha_{2} v_{2}=(a, 2 a,-2 a)+(0,4(b+c),-3(b+c))=(a, 2 a+4 b+4 c,-2 a-3 b-3 c)$ but we know that $(a, b, c) \in G$ hence $2 a+3 b+4 c=0$ which implies that $2 a+4 b+4 c=b$, and $-2 a-3 b-3 c=c$ so we have our result, and hence we got a basis for G.
b- We have to find a basis for H. First Notice that the smallest positive a we can have is for $a=1$ and hence we get $b=2, c=-2$.
Then consider $v=(a, b, c) \in H v^{\prime}=v-a .(1,2,-2)$ is of the form $\left(0, b^{\prime}, c^{\prime}\right) \in H$.
Then we look at $H \cap\{a=0\}$, let us find the vector who have the smallest positive b^{\prime} such that $3 b^{\prime}+4 c^{\prime} \equiv 0 \bmod (12)$, so we get $b^{\prime}=4$ and $c^{\prime}=-3$. The vector $(0,4,-3) \in H \cap\{a=0\}$.
Then $v^{\prime}=\left(0, b^{\prime}, c^{\prime}\right) \in H \cap\{a=0\}$ where $b=4 \beta$, then $v^{\prime}-\beta(0,4,-3)=\left(0,0, c^{\prime \prime}\right) \in H \cap\{a=$ $b=0\}$.
So now we need to find the smallest positive $c^{\prime \prime}$ for $4 c^{\prime \prime}=0$, hence $c^{\prime \prime}=0 \bmod (3)$, hence the vector $(0,0,3) \in H \cap\{a=b=0\}$.
It is easy to see that the vectors $\{(1,2,-2),(0,4,-3),(0,0,3)\}$ are linearly independent. Finally to see that they $\operatorname{span} H$, let $(a, b, c) \in H$ we are required to find α, β, and γ such that $(a, b, c)=\alpha(1,2,-2)+\beta(0,4,-3)+\gamma(0,0,3)$, then we get $\alpha=a$, and beta $=\frac{b-2 a}{4}$ and this is an integer since we know that $2 a+3 b+4 c \equiv 0 \bmod (12) \Longrightarrow 2 a-b \equiv 0 \bmod (4)$, and we get $\gamma=\frac{4 c+8 a+3 b-6 a}{12}=\frac{2 a+3 b+4 c}{12} \in \mathbb{Z}$.
c- First For $G=<\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 4 \\ -3\end{array}\right]>$. We can choose $v_{1}=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right], v_{2}=\left[\begin{array}{c}0 \\ 4 \\ -3\end{array}\right] v_{3}=$ $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ a basis for \mathbb{Z}^{3}. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 4 & -1 \\ -2 & -3 & 1\end{array}\right]$ then $\operatorname{det}(A)=1$, and so $A \in G L_{3}(\mathbb{Z})$, with $A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 4\end{array}\right]$
So
$v_{1}=e_{1}+2 e_{2}-2 e_{3}$
$v_{2}=4 e_{2}-3 e_{3}$
$v_{3}=-e_{2}+e_{3}$
\Longrightarrow
$e_{1}=v_{1}+2 v_{3}$
$e_{2}=v_{2}+3 v_{3}$
$e_{3}=v_{2}+4 v_{3}$

Hence $\left.\left.G / \mathbb{Z}^{3}=<v_{1}, v_{2}, v_{3}\right\rangle /\left\langle v_{1}, v_{2}\right\rangle \cong<v_{3}\right\rangle \cong \mathbb{Z}$.
As for $H=<\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 4 \\ -3\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$. We have to find a new basis for \mathbb{Z}^{3} and H.
Name the elements of the basis of $H y_{1}, y_{2}, y_{3}$, let v_{1}, v_{2}, v_{3} a basis for \mathbb{Z}^{3} be as above. Take a new basis for $H z_{1}=y_{1}, z_{2}=v_{2}, z_{3}=12 v_{3}=y_{3}-3 y_{2}$, then $v_{1}, v_{2}, 12 v_{3}$ is a basis for H, and hence :

$$
\mathbb{Z}^{3} / H=<v_{1}, v_{2}, v_{3}>/<v_{1}, v_{2}, 12 v_{3}>\cong \mathbb{Z}_{12}
$$

Section. 23

Exercise. 34
Notice that $a^{p} \equiv a \bmod (p)$, for all $a \in \mathbb{Z}_{p}$, and hence $x^{p}+a$ always has $-a$ as a solution. So $x^{p}+a$ is not irreducible for all $a \in \mathbb{Z}_{a}$.

Exercise. 35
First we notice that since F is a field then $a^{n} \neq 0$ for all n, and hence $\left(a^{n}\right)^{-1}$ exists. Then since a is a root of $f(x)$ we have that $f(a)=0 \Longrightarrow f(a) \cdot\left(a^{n}\right)^{-1}=0 \Longrightarrow\left(a_{0}+a_{1} a+\ldots+a_{n} a^{n}=\right.$ $0)\left(a^{n}\right)^{-1}=0 \Longrightarrow a_{0}\left(a^{n}\right)^{-1}+a_{1}\left(a^{n-1}\right)^{-1}+\ldots+a_{n}=0$, which implies that $1 / a=a^{-1}$ is a root of $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$.

Section. 27

Notice that in a finite ring R the maximal ideals are the same as the prime ideals, since suppose I is prime ideal, then R / I is a finite integral domain and hence a maximal ideal.

Exercise. 2

The maximal and prime ideals are $\{0,2,4,6,8,10\}$, and $\{0,3,6,9\}$.
Exercise. 4
The maximal and prime ideals are $\{(0,0),(0,1),(0,2),(0,3)\}$ and $\{(0,0),(1,0),(1,2),(0,2)\}$.

Exercise. 6

We must find c such that $\mathbb{Z}_{3} /<x^{3}+x^{2}+c>$ is a field which is equivalent to finding c such that $f(x)=x^{3}+x^{2}+c$ is irreducible.
$f(0)=c$, hence we want $c \neq 0$
$f(1)=2+c$, hence we want $c \neq-2 \bmod (3)$
$f(2)=c$
Hence c can only be equal to 2 .

Exercise. 18

Notice that $x^{2}-5 x+6=(x-3)(x-2)$, then $\left\langle x^{2}-5 x+6>\right.$ is not maximal, hence $\mathbb{Q} /<x^{2}-5 x+6>$ is not a field.

Exercise. 19
We can either use Eisenstein condition with $p=2$, or $p=3$ to find that $x^{2}-6 x+6$ is irreducible , or we can see it directly by noticing that the only roots for this polynomial are $3-\sqrt{3}$ and $3+\sqrt{3}$, and hence $\left\langle x^{2}-6 x+6>\right.$ is maximal so $\mathbb{Q}[x] /<x^{2}-6 x+6>$ is a field.

Exercise. 24
Let P be a prime ideal of R, then R / P is an integral domain. Since R is finite then R / P is a finite integral domain, and hence P is maximal ideal.

Exercise. 28
Let M be a maximal ideal, and let $a, b \in R$ such that $a b \in M$ with $a \notin M$, we are required to show that $b \in M$.

Consider $I=R a+M=\{r a+m \mid r \in R$, and $m \in M\}$.(check that I is an ideal)
Then for any $m \in M, m=0 . a+m \in I$, hence $M \in I$, but since $a \in I$, and $a \notin M$ we get that I must be equal to R. Hence $1 \in I$, so $1=r a+m$ multiplying both sides with b we get that $b=r a b+m b \in M$. So we deduce that M is prime.

Exercise. 32
It is easy to check that N is an ideal of $F[x]$.
Now we have f and g are of different degrees, and that $N \neq F[x]$. Suppose that f and g both irreducible then since they are also of different degrees their gcd is 1 , so we can find $r_{1}(x), r_{2}(x)$ such that $1=r_{1}(x) f(x)+r_{2}(x) g(x)$ and hence $1 \in f[x]$ so $N=F[x]$ which is a contradiction.

Exercise. 34
a- We proved before that $A+B$ is an additive group, and it is easy to see that $A+B$ is closed under right and left multiplication by elements in R.
b- For any $s \in A a=a+0$ and since $0 \in B$ we get that $a \in A+B$, and hence $A \subset A+B$, similarly $B \subset A+B$.

Exercise. 35
a- We know that $A . B$ is an additive group. let $c \in A . B$ then $c=\sum_{i=0 \ldots n}^{\sum} a_{i} b_{i}$ with $a_{i} \in A b_{i} \in B$, then $r c=r \underset{i=0 \ldots . . n}{\Sigma} a_{i} b_{i}=\underset{i=0 \ldots n}{\Sigma} r a_{i} b_{i}=\underset{i=0 \ldots n}{\sum}\left(r a_{i}\right) b_{i}$ with $r a_{i} \in A$, and $b_{i} \in B$ hence $r c \in A . B$. So $A . B$ is an ideal.
b- Let c be as above, notice that for all $i a_{i} b_{i} \in A$ since A is an ideal so $c \in A$ similarly $c \in B$ hence $A . B \subset A \cap B$.

Section. 38

Exercise. 2

It is a basis since :
$(1,0)=(3,1)+(-1)(2,1)$, and $(0,1)=3(2,1)+(-2)(3,1)$, hence $\{(2,1),(3,1)\}$ span $\mathbb{Z} \times \mathbb{Z}$.
Also it is easy to see that they are linearly independent, hence they are a basis of $\mathbb{Z} \times \mathbb{Z}$
Exercise. 3

This is not a basis since any linear combination of these two vectors will give us an even number in the first coordinate, so this set can't span the whole ring $\mathbb{Z} \times \mathbb{Z}$.

