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Problem Set 13 solution manual

Exercise. A13.1

a_

Consider the elements v; = (1,2, —2) and vy = (0,4, —3), it is easy to see that v1, v € G and
that they are linearly independent.

Then if we prove that they span G we they would form a basis for G. So let (a,b,c) € G
and let we need to write (a,b,c) = ajv; + agvy. But it is easy to see that for a; = a and
oy = b+ ¢ we get that:

a1v1 + agvy = (a,2a,—2a) + (0,4(b+ ¢),—3(b+ ¢)) = (a,2a + 4b + 4¢, —2a — 3b — 3c¢) but
we know that (a,b,c) € G hence 2a + 3b + 4c = 0 which implies that 2a + 4b + 4¢ = b, and
—2a — 3b — 3¢ = ¢ so we have our result , and hence we got a basis for G.

We have to find a basis for H. First Notice that the smallest positive ¢ we can have is for
a =1 and hence we get b =2, c = —2.

Then consider v = (a,b,c) € H v/ = v — a.(1,2,—2) is of the form (0,¥',¢) € H.

Then we look at H N {a = 0}, let us find the vector who have the smallest positive b’ such
that 30’ +4¢ = 0 mod(12), so we get b’ = 4 and ¢ = —3. The vector (0,4, —3) € HN{a = 0}.
Then v' = (0,V',¢) € HN{a = 0} where b = 44, then v' — 3(0,4,—-3) = (0,0,¢") € HN{a =
b=0}.

So now we need to find the smallest positive ¢ for 4¢” = 0, hence ¢’ = 0 mod(3), hence the
vector (0,0,3) € HN{a=b=0}.

It is easy to see that the vectors {(1,2,—-2), (0,4, —3),(0,0,3)} are linearly independent. Fi-
nally to see that they span H, let (a,b,c) € H we are required to find «, /3, and ~ such that
(a,b,¢) = a(1,2,—-2) + 3(0,4,—3) + 7(0,0, 3), then we get a = a , and beta = b‘f“ and this
is an integer since we know that 2a + 3b + 4¢ = 0 mod(12) = 2a — b = 0 mod(4), and we

get = 4c+8a1—;3b—6a —_ 2a+i33+4c c7.
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V1 = e+ 262 — 263
Vo = 462 — 363



v3 = —eg + e3
_—

e1 = v1 + 2u3
es = vy + 3us
es = vy + 4vs

Hence G/Z3 =< vy, ve,v3 > |/ < v1,v9 >=< v3 > 7.
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As for H =< 2 , 4 0 | . We have to find a new basis for Z3 and H.
-2 -3 3

Name the elements of the basis of H y1, 2,43, let vi, vs,v3 a basis for Z? be as above. Take
a new basis for H z1 = y1, 20 = v9, 23 = 12v3 = y3 — 3y, then v1,v9, 12v3 is a basis for H ,
and hence :

Zg/H =< vV1,V2,V3 > / < V1,02, 1203 >= VADY

Section. 23

Exercise. 34
Notice that a? = a mod(p), for all a € Z,, and hence zP 4 a always has —a as a solution. So 2 +a
is not irreducible for all a € Z,.

Exercise. 35

First we notice that since F is a field then a™ # 0 for all n, and hence (a™)~! exists. Then since
a is a root of f(x) we have that f(a) =0 = f(a).(a")™' =0 = (ag +a1a+ ...+ aza® =
0)(a™)™ ' =0 = ap(a®) "t +a1(a™ 1) + ...+ a, = 0, which implies that 1/a = a~! is a root of
apz™ + a1z L+ ...+ ay.

Section. 27

Notice that in a finite ring R the maximal ideals are the same as the prime ideals, since suppose
I is prime ideal, then R/I is a finite integral domain and hence a maximal ideal.

Exercise. 2
The maximal and prime ideals are {0,2,4,6,8,10}, and {0, 3,6,9}.

Exercise. 4
The maximal and prime ideals are {(0,0), (0,1),(0,2),(0,3)} and {(0,0), (1,0),(1,2),(0,2)} .

Exercise. 6
We must find ¢ such that Z3/ < 23 + 22 + ¢ > is a field which is equivalent to finding ¢ such that
f(x) = 23 + 2% + ¢ is irreducible.

f(0) = ¢, hence we want ¢ # 0

f(1) =2+ ¢, hence we want ¢ # —2 mod(3)

72) =c

Hence ¢ can only be equal to 2.



Exercise. 18

Notice that z2 — 52 + 6 = (r — 3)(z — 2), then < 22 — 52 + 6 > is not maximal, hence
Q/ < 2? — 5z + 6 > is not a field.

Exercise. 19

We can either use Eisenstein condition with p = 2, or p = 3 to find that 22 — 62 +6 is irreducible
, or we can see it directly by noticing that the only roots for this polynomial are 3 — /3 and 3+ /3,
and hence < 2 — 6z + 6 > is maximal so Q[z]/ < 2% — 6z + 6 > is a field.

Exercise. 24

Let P be a prime ideal of R, then R/P is an integral domain. Since R is finite then R/P is a
finite integral domain, and hence P is maximal ideal.

Exercise. 28

Let M be a maximal ideal, and let a, b € R such that ab € M with a ¢ M, we are required to
show that b € M.

Consider I = Ra+ M = {ra+m | r € R, and m € M}.(check that I is an ideal )

Then for any m € M, m = 0.a+m € I, hence M € I, but since a € I, and a ¢ M we get
that I must be equal to R. Hence 1 € I , so 1 = ra + m multiplying both sides with b we get that
b=rab+mbe M. So we deduce that M is prime.

Exercise. 32
It is easy to check that N is an ideal of F'[z].

Now we have f and g are of different degrees, and that N # F[z]. Suppose that f and g both
irreducible then since they are also of different degrees their ged is 1, so we can find (), ro(z)
such that 1 =ry(z)f(z) + r2(x)g(z) and hence 1€ f[x] so N = F[x] which is a contradiction.

Exercise. 34

a- We proved before that A + B is an additive group, and it is easy to see that A + B is closed
under right and left multiplication by elements in R.

b- For any s € A a =a+ 0 and since 0 € B we get that a € A+ B , and hence A C A+ B,
similarly B C A+ B.

Exercise. 35

a- We know that A.B is an additive group. let ¢ € A.B then ¢ = g] a;b; with a; € A b; € B,
=u...n

7=

then re =1 g] ab; = OE ra;b; = X (ra;)b; with ra; € A, and b; € B hence rc € A.B.
= n =U...n (A

1=0... =0...n
So A.B is an ideal.



b- Let ¢ be as above, notice that for all i a;b; € A since A is an ideal so ¢ € A similarly ¢ € B
hence A.B C AN B.

Section. 38

Exercise. 2

It is a basis since :
(1,0)=(3,1)+(-1)(2,1), and (0,1)=3(2,1)+(-2)(3,1), hence {(2,1),(3,1)} span Z x Z.
Also it is easy to see that they are linearly independent, hence they are a basis of Z x Z

Exercise. 3

This is not a basis since any linear combination of these two vectors will give us an even number
in the first coordinate, so this set can’t span the whole ring Z x Z.



